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ABSTRACT 

 
Background registration technique is useful to solve still object problem and uncovered background problem for video 
segmentation. However, it is hard to automatically decide the threshold of the frame difference for background 
registration to make it more feasible for real-time applications. Many previous works made efforts on automatic 
threshold decision for change detection. In this paper, we propose a new method of automatic threshold decision 
algorithm in a totally different viewpoint. Not only change detection but also the quantization effect in discrete domain is 
concerned. A Gaussianity test is first applied to find the standard deviation of Gaussian noise from the camera. Then, the 
quantization effect in discrete domain is taken into consideration to derive the relation between the standard deviation 
and the optimal threshold value. A couple MPEG-4 sequences and experimental sequences are tested as examples. 
Simulation results show that the calculated threshold values are suitable for background registration to give good 
segmentation results. 
 
Keywords: automatic threshold decision, background registration, change detection, video segmentation, object 
extraction. 
 

1. INTRODUCTION 
 
MPEG-4 [1] is the latest video coding standard and will be applied to many real-time applications, such as videophone, 
videoconference, and video camera. Since one of the key functions of MPEG-4 is content-based coding, the shape 
information is indispensable for shape coding, motion estimation/compensation, and texture coding [2]. Video 
segmentation is the methodology that extracts video objects from video sequences and provides MPEG-4 encoding 
systems with shape information. Therefore, video segmentation is the fundamental for content-based real-time MPEG-4 
camera systems. 
 

Despite of its importance, video segmentation still remains an unsolved problem. Many video segmentation 
algorithms have been proposed. In [3][4][5], a change detection based algorithm is proposed. Global motion 
compensation is first applied to compensate the camera motion, and scene change detection is used to reset the algorithm. 
Automatic threshold decision for change detection is described. The threshold value can be calculated as long as the 
standard deviation and the distribution model of camera noise are known. Boundary relaxation is adopted to depress the 
noise, and a temporal filter that can improve the temporal coherence of the objects is developed. Motion estimation is 
applied to eliminate the uncovered background. Finally, object masks are adapted to luminance edges. In [6][7], Canny 
edge operator, combined with change detection or a morphological motion filter, is used to extract a portion of object 
boundaries, followed by a filling technique and boundary refinement. In [8], instead of the temporal segmentation scheme 
like change detection, a spatial segmentation scheme is adopted. Each frame is first intra-segmented by watershed 
algorithm using multi-scale morphological gradient filter to deal with ramp edges and to alleviate the over-segmentation 
problem. Next, region merging and temporal tracking, which include weak edge detection and region merging, 
respectively, are used to get the final segmentation results. Color segmentation is another spatial segmentation algorithm. 
In [9][10], image intensities are classified into several clusters and homogenous regions are labeled by connected 
component algorithm. Then, regions can be gathered to form objects. In [11], a hybrid scheme is adopted. Watershed 
algorithm, as well as region merging, is applied. Change detection is combined to determine the object shape region by 
region. Region tracking is also used to increase the temporal coherence. In [12], a hybrid scheme is also adopted. 
Foreground regions are found by temporal segmentation based on change detection. Then, regions are created by spatial 



segmentation based on K-Means with connectivity constraints. Although the above algorithms give good segmentation 
results in some cases, their computation may be too high for real-time applications. 
 

It is not easy to meet the real-time requirements for computationally expensive operations, such as motion estimation, 
K-means, watershed, boundary relaxation, …etc. Therefore, change detection is selected as the basic operation of our 
segmentation algorithm [13][14][15]. A background registration technique, combined with pre-processing and post-
processing, is developed to solve the still object problem and uncovered background problem encountered by the 
conventional change detection. The implementation is optimized on SIMD architecture by sub-word parallelism and 
MMX instructions. In [16], predictive watershed is proposed to cooperate with background registration and to provide 
video objects with more accurate boundaries with reduced computational load, compared with watershed algorithm. 
 

Change detection and background registration technique have been provided that they are useful for video 
segmentation. Although our previous works can quickly give good segmentation results under a fixed camera, the 
threshold value of frame difference for background registration is empirically obtained. In order to make the segmentation 
algorithm more promising for real-time applications, automatic threshold decision is urgently needed. In this paper, a new 
method of automatic threshold decision of background registration for video segmentation is proposed. It can be divided 
into two main parts: Gaussianity test and scaling factor mapping. First, a criterion can be applied in each frame to find the 
blocks with Gaussian-distributed frame differences. In fact, these blocks with Gaussian-distributed frame differences are 
very likely to be stationary background, and their frame differences are resulted from Gaussian camera noise. Therefore, 
the standard deviation of these blocks is computed. Probability theories and the quantization effect in discrete domain are 
also taken into consideration to derive the relation between the standard deviation of Gaussian camera noise and the 
optimal threshold value. Finally, the standard deviation can be easily mapped to an optimal threshold by a table look-up 
method. Simulation results show that the calculated thresholds are suitable for background registration to give good 
segmentation results. 
 

The rest of this paper is organized as follows. An efficient video segmentation algorithm under a fixed camera is 
reviewed in Section 2. Automatic threshold decision of background registration is proposed in Section 3. Simulation 
results are shown in Section 4, and the conclusion is drawn in Section 5. 
 

2. VIDEO SEGMENTATION ALGORITHM 
 
The flowchart of our video segmentation algorithm is shown in Fig. 1. The basic idea is change detection. A background 
registration technique is developed to solve the still object problem and uncovered background problem. The background 
difference, which is the difference between current frame and background buffer, is combined with frame difference to 
determine the initial object mask, which is refined by the post-processing. Morphological gradient filter can be optionally 
turned on to suppress the influence of shadows. Predictive watershed can also be combined to get more accurate 
boundaries. 
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Figure 1. The flowchart of our video segmentation algorithm 



2.1 Background registration technique 
 
2.1.1 Frame difference mask generation 
 
The absolute difference between current frame and the previous frame is calculated. Pixels with frame difference larger 
than a predefined threshold value are regarded as foreground while those with frame difference smaller than the threshold 
are viewed as background. Thus, a frame difference mask (FDM) can be generated as follows: 
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where It is the intensity of current frame at position (x, y), It-1 is the intensity of previous frame at position (x, y). 
 
2.1.2 Background registration 
 
A stationary index (SI) is to register if the current pixel belongs to background. The registration process can be shown as:  
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where SIt(x, y) is the stationary index at time t, Backgroundt(x, y) is the background buffer at time t, and sth is the 
stationary threshold. If a pixel is detected as unchanged in the past consecutive sth frames, it will be included into 
background buffer. Otherwise, the stationary index of the pixel will be reset to zero. 
 
2.1.3 Background difference mask generation 
 
This step generates a background difference mask (BDM) by thresholding the difference between the current frame and 
the background data stored in the background buffer. It can be described as the following equation: 
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2.1.4 Initial object mask generation 
 
If the background exists, that is, SI(x, y) is larger than sth, we let object mask, OM(x, y), equal to BDM(x, y). Otherwise, 
OM(x, y) is equal to FDM(x, y). Table 1 lists the criteria for initial object mask generation. |FD| and |BD| mean the 
absolute frame difference and the absolute background difference, respectively. For the first two cases listed in table 1, the 
background is not yet registered, and the frame difference is used. In case 3 to case 6, the background is available, so the 
object mask is determined by background difference. In case 3 and 4, our results are the same as conventional change 
detection. However, conventional change detection makes wrong decisions in case 5 and 6. Conventional change 
detection is not capable of dealing with the still object problem (case 5). It loses tracking of still objects. The uncovered 
background is another problem (case 6) for conventional change detection. Motion estimation is adopted in [4][5] to solve 
the uncovered background problem. Pixels with large motion compensated errors are regarded as uncovered background. 
There are two main drawbacks of this method. One is that motion estimation is too computationally expensive, and the 
other is that if the object shape is changed, motion estimation cannot be precise, and the uncovered background cannot be 
correctly removed. It is clearly seen from table 1 that our algorithm easily solves the still object problem (case 5) and 
uncovered background problem (case 6) with the help of background registration technique to avoid heavy computation. 
 

Case Background Difference Frame Difference Region Description Object      
1 Not Available |FD|＞THFD Moving Yes 
2 Not Available |FD|≦THFD Stationary No 
3 |BD|＞THBD |FD|＞THFD Moving Object Yes 
4 |BD|≦THBD |FD|≦THFD Background No 
5 |BD|＞THBD |FD|≦THFD Still Object Yes 
6 |BD|≦THBD |FD|＞THFD Uncovered Background No 

Table 1. Initial object mask generation 



2.1.5 Post-processing 
 
Sometimes the initial object mask is very noisy because of the camera noise. Instead of adopting the heavy computation 
like boundary relaxation [3][4][5], we simply eliminate too small regions using connected component algorithm to 
calculate the area of each region. Then, a temporal filter is optionally applied to improve the temporal coherency. The 
main concept is that if a certain pixel is determined as foreground object now by the initial mask, the possibility that this 
pixel belongs to the object for the next L frames should be very large. Thus, no matter how the initial mask will be, the 
pixel will be labeled as object for the next L frames. Finally, binary morphological closing and opening are applied to 
smooth object boundaries. 
 
2.2 Shadow cancellation mode 
 
Moving objects may result in moving shadows in background regions, and the moving shadows will be detected as 
foreground by conventional change detection. A morphological gradient filter is applied as pre-processing to partially 
solve this problem. A typical gradient image is shown in Fig. 2(c). The edges are emphasized while the homogeneous 
regions are depressed. The segmentation result in the original domain is shown in Fig. 2(b), and the one in the gradient 
domain is shown in Fig. 2(d). Extra binary erosion is applied on the final mask to compensate the edge enhancement of 
the gradient filter. 
 

          
(a)                                   (b)                                   (c)                                   (d) 

Figure 2. (a) original frame, (b) segmentation result in original domain, (c) gradient image, (d) segmentation result in gradient domain. 
 
2.3 Predictive watershed 
 
Watershed algorithm can be combined with temporal segmentation to give more accurate boundaries. However, it wastes 
a lot of time on segmenting the background. Instead of recalculating the watersheds of the whole frame, predictive 
watershed algorithm updates the watersheds in changed regions. In the I-frame, original watershed algorithm is applied. 
In the P-frames, the watersheds where the frame difference is smaller than a threshold are kept the same, and a modified 
watershed algorithm is applied on the changed regions. Thus, the background regions are not segmented again and again, 
and a lot of computation is saved. The original segmentation result and the significant improvement in Children sequence 
are shown in Fig. 3(a) and Fig. 3(b), respectively. This part is also optional. 
 

  
(a)   (b) 

Figure 3. (a) Segmentation result of the original algorithm, (b) segmentation result with predictive watershed. 
 

3. AUTOMATIC THRESHOLD DECISION 
 
In [3, pp.168], the frame difference threshold is determined by the significant test. The standard deviation of camera 
noise is computed off-line or recursively on-line from unchanged regions. Then, the threshold can be mapped from the 
standard deviation according to the distribution model of camera noise.  In our algorithm, the calculation of THBD in (3) 
is also determined by the significant test, while THFD is derived in a different view, that is, background registration. The 
proposed automatic threshold decision algorithm consists of three main stages: Gaussianity test, calculation of the 
standard deviation of camera noise, and scaling factor mapping. The flowchart is illustrated in Fig. 4. 



B lo c k -B a s e d  G a u s s ia n ity  T e s t

C a lc u la te  th e  S ta n d a rd  D e v ia t io n  o f C a m e ra  N o is e

S c a lin g  F a c to r  M a p p in g

F ra m e  D iffe re n c e

O p t im a l T h re s h o ld  
Figure 4. The flowchart of automatic threshold decision. 

 
3.1 Gaussianity test 
 
It is reasonable to say that the frame difference of stationary background resulted from camera noise is Gaussian-
distributed, for the assumption of camera noise with Gaussian distribution is valid in many situations. Besides, the frame 
difference of moving objects is often not Gaussian-distributed. Therefore, a Gaussianity test is adopted to roughly 
separate the stationary background and the moving object. First, each frame is divided into M × N blocks. Then, a 
criterion can be applied to tell whether the frame difference of a block is Gaussian-distributed or not. The criterion that 
has been used to detect small moving object well in noisy image [17] is shown as follows:  
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where (4) is the k-th moment of the M × N block and d is the frame difference. According to the block size, we can use (5) 
or (6) to determine whether this block is Gaussian-distributed or not. Criterion (5) is suitable for smaller blocks, while (6) 
is suitable for larger blocks. In our simulation, the block size is 16 × 16, and (5) is adopted. If the block is Gaussian-
distributed, H is close to zero; otherwise, it is far from zero. Therefore, we define a fixed threshold for Gaussianity test, 
not requiring other steps to determine it. The typical value is 1 ~ 5 and is not critical in our algorithm. 
 
3.2 Calculate the standard deviation of camera noise 
 
The standard deviation of frame difference in Gaussian blocks is calculated in this stage. It is believed that the standard 
deviation of frame difference in Gaussian blocks is very close to that of camera noise. It is mapped to an optimal 
threshold using the step described in the next subsection. Notice that except the assumption of Gaussian camera noise, no 
other prior knowledge, such as the object shape or the position of background, is required as an input to calculate the 
standard deviation of camera noise. If the position of background is known, Gaussianity test can be skipped. For example, 
if it is guaranteed that the blocks at the top left or top right corners always belong to background, these blocks can be 
directly used to calculate the standard deviation of camera noise without Gaussianity test. 
 
3.3 Scaling factor mapping 
 
The decision of THBD is simply obtained by the standard deviation multiplied by 2.5. The reason is the same as 
significance test in [3]. As for the other threshold THFD, background registration, instead of change detection, is our main 
consideration. We let the frame difference of a certain pixel in background region be a random variable d. The 
probability density function under the assumption of Gaussian camera noise is shown as follows: 
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Only the absolute value of frame difference is concerned in background. Thus, the above equation can be rewritten as: 
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where F(d) is the probability accumulation function of f(d). The background registration technique is to register the 
pixels labeled as unchanged in consecutive N frames into the background buffer. This process is similar to a random 
variable transformation from d to Xk shown as: 

))(),...,(),(( 21 nk dfdfdfKthX =     (9) 
where Kth is an order statistics operator [18][19] that always selects the k-th largest element. The accumulation function 
and probability density function of Xk are derived as: 
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A pixel will be registered into background buffer if every random sample, d, in consecutive N frame is lower than the 
threshold. Therefore, the optimal threshold should be as the maximum of the N samples, that is, k = N. We define the 
optimal threshold as the expectation value of the maximum among N frame differences in background regions. In this 
way, we can both alleviate miss penalty and avoid over-registration. A pixel of moving object will be registered into 
background buffer if its frame difference is lower than the tiny camera noise for consecutively N times. Since the 
probability is quite low, the false alarm penalty is not significant. Finally, the optimal threshold is shown as follows: 
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The characteristic curves of calculated threshold values to standard deviation for different N are drawn in Fig. 5. 
However, they are somewhat different from the optimal thresholds that are empirically obtained. The reason is that the 
standard deviation of camera noise computed via the steps in subsection 3.1 and 3.2 is discrete while the σin the 
derivation of (11) is continuous. Therefore, the quantization effect in discrete domain is then taken into consideration to 
modify the mapping. Each value of the standard deviation in continuous domain can be mapped to its corresponding 
standard deviation in discrete domain, and the standard deviation in discrete domain can further be mapped to the optimal 
threshold. 
 

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

0 0.5 1 1.5 2 2.5 3 3.5

Standard Deviation of Gaussian Camera Noise in Continuous Domain

C
al

cu
la

te
d 

Th
re

sh
ol

d 
U

si
ng

 (1
1)

N=5
N=7
N=10
N=15
N=30

 
Figure 5. Calculated threshold in equation (11) versus the standard deviation of Gaussian camera noise in continuous domain. 



First, we define the histogram of frame difference in background regions as follows: 
}),(,),(|),{(#)( backgroundcrdcrFDcrdh ∈==    (12) 

where # is an operator that counts the number of pixels, (r, c) is the position of pixel, and FD(r, c) is the frame difference. 
The probability of a certain value of frame difference in background regions can be written as: 
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Therefore, we can rewrite (8) into a discrete form as shown in Fig. 6 and define Pk as the probability P(d = k) as follows: 
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Figure 6. An example of mapping P(d) in continuous domain to Pk in discrete domain for σ= 1. 

 
Note that the probability density function for |d|>255.5 is almost zero, and thus Pk for k>255 is discarded. Then, the 
standard deviation and the corresponding optimal threshold in discrete domain can be defined as: 
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Thus, the characteristic curve of the optimal threshold to the estimated standard deviation of Gaussian camera noise in 
discrete domain can be drawn in this way and is shown in Fig. 7. Now if the standard deviation of camera noise is known, 
THFD can be obtained by a table-lookup method. 
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Figure 7. Optimal threshold in equation (16) versus estimated standard deviation of Gaussian camera noise in discrete domain. 



As shown in Fig. 7, the larger N becomes, the bigger the optimal threshold will be. This fact is taken for granted 
since N implies the extent of difficulty to registration. That is, the optimal threshold is defined as the expectation value of 
the largest frame difference of a certain pixel in the background among the N frame differences of the same pixel, and 
thus the optimal threshold should increase as N does. Also, we may note that there is a local maximum. This is because 
probability density within –0.5 ≦ d ＜ 0.5, which is quite a large portion of total probability, is contributed to d = 0 (P0), 
as shown in Fig. 6. For example, when σ= 0.5σ= 1.0, P0 is 38.29% and 68.27%, respectively. Note that P0 contributes 
nothing to the optimal threshold THFD, as shown in (16). 
 

4. SIMULATION RESULTS 
 
The characteristic curves of optimal threshold values versus the standard deviation of Gaussian camera noise under 
different background registration conditions have been shown in the previous section. Once the standard deviation is 
obtained, the optimal threshold can be calculated. Many sequences under different noise conditions are tested using the 
proposed automatic threshold decision algorithm and the previously proposed segmentation algorithm. The test 
sequences include the sequences provided by MPEG-4 standard and those recorded by us. Different levels of additive 
Gaussian noise are also intentionally added to test our algorithm. 
 
4.1 Gaussianity test 
 
The main purpose of Gaussianity test is to roughly find the background regions. As you can see the results of Gaussianity 
test for different sequences in Fig. 8, the correlation between the Gaussian blocks drawn in black and the stationary 
background is high. Thus, the standard deviation of Gaussian camera noise can be estimated as the standard deviation of 
frame difference in detected Gaussian blocks without any prior knowledge of the positions of background regions. 
 

       

      
     (a)      (b)         (c)            (d)                (e)  (f) 
Figure 8. The original frames and the results of Gaussianity test for  (a) Akiyo #50, (b) Claire #50, (c) Frank #50, (d) Hall Monitor 

#50, (e) Mother and Daughter #50, (f) Weather #50. 
 
4.2 Objective evaluation 
 
The criterion for objective evaluation is defined as the number of error pixels divided by the number of total pixels in the 
frame. Ground-true masks are available for some MPEG-4 test sequences. The results for Akiyo, Children, and Weather 
are shown in Fig. 9. The error percentage of Akiyo is below 0.7% for all frames. As for Children, gradient filter and 
predictive watershed are turned on. The average error percentage of Children is about 3% due to the large motion of the 
two children and the ball. The error percentage of Weather is below 1% at most of the frames, except a sudden rise to 
4.5% near frame 75. It is because of the sudden step back of the weather forecaster. After the uncovered background 
regions are registered into background buffer, the error rate quickly drops back to 0.5%. 
 

In order to further test the capability of the proposed automatic threshold decision algorithm, different levels of 
additive Gaussian noise is added into Weather. The standard deviation of Gaussian noise is 0.5, 1.2, and 0.7 during frame 
1 ~ 33, frame 34 ~66, and frame 67 ~ 100, respectively. The optimal threshold is adaptively adjusted according to the 
camera noise. In Fig. 10(a), the calculated standard deviation for each frame is shown. The optimal threshold can be 
mapped using the curves in Fig. 7 (N = 5). The error percentage is shown in Fig. 10(b). The error rate rises a little, 
compared with Fig. 9(c). 
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(a)     (b)             (c) 

Figure 9. The error percentage of (a) Akiyo, (b) Children, (c) Weather. 
 

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

0 10 20 30 40 50 60 70 80 90 100
Frame Number

Es
tim

at
ed

 S
ta

nd
ar

d 
D

ev
ia

tio
n 

of
 C

am
er

a 
N

oi
se

 
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

1 11 21 31 41 51 61 71 81 91
Frame Number

Er
ro

r P
er

ce
nt

ag
e(

%
)

 
(a)     (b) 

Figure 10.  Three different levels of Gaussian noise are added into Weather. The levels are 0.5, 1.2, and 0.7. (a) Estimated standard 
deviation of camera noise from Gaussianity test versus frame. (b) Error percentage versus frame. 

 
4.3 Subjective view 
 
In Fig. 11, segmentation results of various sequences are shown in subjective views. The frame rate of the original 
sequence is 10fps. N is set to 5 in these cases. Frame #20, #40, #60, and #80 are shown for all the sequences, except for 
Children. There are only 50 frames in Children, and frame #6, #18, #30, and #42 are selected. Gradient filter is turned on 
for Children, Claire, Frank, Hall Monitor, Shaoyi, and Silent. Predictive watershed is turned on for Children. 
 

    
(a) Akiyo #20          (b) Akiyo #40    (c) Akiyo #60       (d) Akiyo #80  

    
(e) Children #6         (f) Children #18                (g) Children #30      (h) Children #42  

                                     
(i) Claire #20            (j) Claire #40   (k) Claire #60        (l) Claire #80 



                         
(m) Frank #20         (n) Frank #40                  (o) Frank #60          (p) Frank #80  

    
(q) Hall Monitor #20       (r) Hall Monitor #40        (s) Hall Monitor #60             (t) Hall Monitor #80  

                                     
(u) Mother and Daughter #20         (v) Mother and Daughter #40        (w) Mother and Daughter #60       (x) Mother and Daughter #80  

                         
(y) Shaoyi #20        (z) Shaoyi #40                           (α) Shaoyi #60     (β) Shaoyi #80  

    
(γ) Silent #20       (δ) Silent #40             (ε) Silent #60   (ζ) Silent #80  

    
(η) Weather #20         (θ) Weather #40               (ι) Weather #60       (κ) Weather #80  

Figure 11. Segmentation results of various sequences. 
 
4.4 Run-time analysis 
 
The run-time analysis is also shown in this paper. The test environment is a PC with Intel Pentium III 800MHz CPU 
running Microsoft Windows 2000 operating system. The profile of the segmentation algorithm is shown in Fig. 12(a). 



The optional morphological gradient filter and predictive watershed are turned off. The core process, which includes 
frame difference, background registration, background difference, and initial mask generation, is optimized by MMX 
instructions. The post-processing includes connected component operations, a temporal filter, and binary morphological 
operations. The binary morphological operations are speeded up by sub-word parallelism. The calculation of thresholds 
occupies the most computation. The processing speed is 20 QCIF (176×144) frames per second. 
 

The automatic threshold decision algorithm is modified to reduce the heavy computation. Gaussianity test is only 
applied on the first several frames. For the following frames, the standard deviation of camera noise is computed from 
the blocks that are not neighboring to any block containing part of objects in the previous frame. The profile is shown in 
Fig. 12(b). Now the processing speed is 38 QCIF frames per second. 
 

Mother and Daughter, QCIF, 100 frames
Operations Run-Time

Calculate Thresholds
Core

Post-Processing
I/O

Others
Total

2554.993 ms
134.493 ms
1681.264 ms
285.162 ms
257.753 ms
4913.665 ms

20.35 frames per second  
(a) 

Mother and Daughter, QCIF, 100 frames
Operations Run-Time

Calculate Thresholds
Core

Post-Processing
I/O

Others
Total

270.228 ms
143.997 ms
1689.703 ms
297.535 ms
167.656 ms
2569.119 ms

38.92 frames per second  
(b) 

 
Figure 12. The run-time analysis of Mother and Daughter. Gaussianity test is turned on for (a) every frame, (b) only the first 7 frames. 
 

If the frame size is larger or when gradient filter or predictive watershed is turned on, the computation will be too 
heavy for general-purpose processors to attain real-time performance. Fortunately, most of the operations in predictive 
watershed, pre-processing, and post-processing can be mapped to morphological operations. They are simple and regular, 
and thus, are suitable for hardware acceleration. Currently, we are working on these related issues, and some 
achievements have been made [20][21]. 
 

5. CONCLUSION 
 
A new method of automatic threshold decision of the frame difference for background registration is proposed. 
Gaussianity test is first applied to find the standard deviation of Gaussian camera noise. Then the optimal threshold value 
can be obtained from the standard deviation multiplied by a scaling factor. Probability theories and the quantization 
effect in discrete domain are taken into considerations to derive the relation between the standard deviation of Gaussian 
camera noise and the optimal threshold value. Simulation results show that the automatic threshold decision algorithm, 
combined with the previously proposed video segmentation algorithm, can extract the video objects well under a fixed 
camera. Furthermore, the processing speed is fast enough to meet real-time requirements. When the gradient filter and 
predictive watershed are turned off, 20 and 38 QCIF frames per second can be achieved with and without Gaussianity 
test, respectively, on a personal computer with Intel Pentium III 800MHz CPU running Microsoft Windows 2000 
operating system. 
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